The category of reflexive modules over one-dimensional Cohen-Macaulay rings

Naoki Endo

Meiji University

based on the recent works jointly with S. Goto

Tokyo Commutative Algebra Seminar

December 16, 2022

1. Introduction

Let

- R a commutative Noetherian ring with (S_2) and Q(R) is Gorenstein
- Mod R the category of R-modules
- $\operatorname{mod} R$ the subcategory of $\operatorname{Mod} R$ consisting of finitely generated *R*-modules For $M \in \operatorname{mod} R$.

 $\begin{array}{l} M \text{ is a reflexive } R\text{-module} & \stackrel{def}{\longleftrightarrow} & \text{the natural map } M \to M^{**} \text{ is an isomorphism} \\ & \longleftrightarrow & M_{\mathfrak{p}} \text{ is reflexive for } \mathfrak{p} \in \operatorname{Spec} R \text{ s.t. } \dim R_{\mathfrak{p}} = 1 \\ & \text{ and } M \text{ satisfies } (S_2) \end{array}$

where $(-)^* = \operatorname{Hom}_R(-, R)$ and

 $M \text{ satisfies } (S_2) \iff \operatorname{depth}_{R_\mathfrak{p}} M_\mathfrak{p} \ge \inf\{2, \dim R_\mathfrak{p}\} \text{ for } \forall \mathfrak{p} \in \operatorname{Spec} R.$

In what follows, let

- (R, \mathfrak{m}) a CM local ring with dim R = 1, Q(R) is Gorenstein, and $|R/\mathfrak{m}| = \infty$
- $R \subseteq A \subseteq Q(R)$ an intermediate ring s.t. $A \in \operatorname{mod} R$
- CM(A) the subcategory of mod A consisting of MCM A-modules
- Ref(A) the subcategory of mod A consisting of reflexive A-modules

For $M \in \operatorname{mod} A$,

$$\begin{array}{ll} M \text{ is a MCM } A\text{-module} & \stackrel{def}{\longleftrightarrow} & \operatorname{depth}_{A_{\mathfrak{p}}} M_{\mathfrak{p}} \geq \dim A_{\mathfrak{p}} \text{ for } \forall \mathfrak{p} \in \operatorname{Spec} A \\ & \longleftrightarrow & M \text{ is a torsion-free } A\text{-module.} \end{array}$$

Then $\operatorname{Ref}(A) \subseteq \operatorname{CM}(A)$ and

$$\begin{split} \operatorname{Ref}(A) &= \{ M \in \operatorname{mod} A \mid \exists \ 0 \to M \to F_0 \to F_1 \ \text{s.t.} \ F_i \in \operatorname{mod} A \ \text{is free} \} \\ &= \{ M \in \operatorname{mod} A \mid \exists \ 0 \to M \to F \to X \to 0 \ \text{s.t.} \ F \ \text{is free}, \ X \in \operatorname{CM}(A) \} \\ &= \Omega \operatorname{CM}(A). \end{split}$$

Note that $\Omega CM(A) = CM(A) \iff A$ is a Gorenstein ring.

By setting $E = \operatorname{End}_R(\mathfrak{m}) \cong \mathfrak{m} : \mathfrak{m}$, we have

Theorem 1.1 (Goto-Matsuoka-Phuong) $\Omega CM(E) = CM(E) \iff R \text{ is almost Gorenstein and } \mathfrak{m} \text{ is stable.}$

Recall that

- an ideal I of R is stable if $I^2 = aI$ for $\exists a \in I$
- \mathfrak{m} is stable \iff R has minimal multiplicity, i.e., e(R) = v(R)
- *R* is an almost Gorenstein ring if $\mathfrak{m}K \subseteq R$, where $R \subseteq K \subseteq \overline{R}$ s.t. $K \cong K_R$.

Let $\Omega CM_{\mathcal{P}}(R) = \{ M \in \Omega CM(R) \mid M \text{ doesn't have free summands} \}.$

Theorem 1.2 (Kobayashi)

- (1) $\Omega CM(E) \subseteq \Omega CM_{\mathcal{P}}(R) \subseteq CM(E)$.
- (2) $\Omega CM(E) = \Omega CM_{\mathcal{P}}(R) \iff \mathfrak{m} \text{ is stable.}$
- (3) $\Omega CM_{\mathcal{P}}(R) = CM(E) \iff R$ is an almost Gorenstein ring.

Question 1.3 What happens if we take $End_R(I)$?

Another motivation comes from the following.

Theorem 1.4 (Dao-Iyama-Takahashi-Vial)

Let (A, \mathfrak{m}) be an excellent henselian local normal domain with dim A = 2 and A/\mathfrak{m} is algebraically closed. Then

A has a rational singularity $\iff \Omega CM(A)$ is of finite type.

A subcategory \mathcal{X} of $\operatorname{mod} A$ is called of finite type if $\mathcal{X} = \operatorname{add}_A M$ for $\exists M \in \operatorname{mod} A$.

< ロト < 同ト < ヨト < ヨ

Question 1.5

When is $\Omega CM(R)$ of finite type for a one-dimensional ring R?

Recall that

- *R* is an almost Gorenstein ring $\iff \Omega CM_{\mathcal{P}}(R) = CM(E)$
- $\Omega CM_{\mathcal{P}}(R) = \{ M \in \Omega CM(R) \mid M \text{ doesn't have free summands} \}.$

Corollary 1.6 (Kobayashi)

Suppose that R is an almost Gorenstein ring. Then

 $\Omega CM(R)$ is of finite type $\iff CM(E)$ is of finite type

where $E = \operatorname{End}_R(\mathfrak{m}) \cong \mathfrak{m} : \mathfrak{m}$.

Question 1.7

How about the case where R is not an almost Gorenstein ring?

Naoki Endo (Meiji University)

2. Main theorem

Note that \mathfrak{m} is a regular reflexive trace ideal, once R is not a DVR.

For an R-module M, consider the homomorphism

 $au: M^* \otimes_R M \to R, \ f \otimes m \mapsto f(m) \ \text{ for } f \in M^* \text{ and } m \in M$

and set $\operatorname{tr}_R(M) = \operatorname{Im} \tau$.

We say that I is a trace ideal of $R \iff I = \operatorname{tr}_R(M)$ for some R-module M $\iff I = \operatorname{tr}_R(I)$ $\iff R : I = I : I.$ (when I is regular)

- R: m = m: m, if R is not a DVR. (Goto-Matsuoka-Phoung)
- *M* doesn't have free summands $\iff \operatorname{tr}_R(M) \subseteq \mathfrak{m}$. (Lindo)
- I = R : A is a regular reflexive trace ideal of R.

Hence $\Omega CM_{\mathcal{P}}(R) = \{ M \in \Omega CM(R) \mid tr_{R}(M) \subseteq \mathfrak{m} \}.$

Naoki Endo (Meiji University)

An \mathfrak{m} -primary ideal I of R is called

• Ulrich ideal if $I^2 = aI$ and I/(a) is R/I-free for $\exists a \in I$

• good ideal if $I^2 = aI$ and $(a) :_R I = I$ for $\exists a \in I$.

For regular ideals in R, we have

If R is Gorenstein, there are one-to-one correspondences for regular ideals: (Goto-Isobe-Kumashiro, Goto-Isobe-T)

- { trace ideals } \longleftrightarrow { birational module-finite extensions }
- { good ideals } \longleftrightarrow { Gorenstein birational module-finite extensions }
- { Ulrich ideals } \longleftrightarrow { Gorenstein birational extensions A s.t. $\mu_R(A) = 2$ }
- { reflexive trace ideals } \longleftrightarrow { reflexive birational module-finite extensions }

Let I be a regular reflexive trace ideal of R. We set

•
$$A = \operatorname{End}_R(I) \cong I : I$$

•
$$\Omega CM(R, I) = \{ M \in \Omega CM(R) \mid tr_R(M) \subseteq I \}.$$

Choose $R \subseteq K \subseteq \overline{R}$ s.t. $K \cong K_R$. Set S = R[K] and $\mathfrak{c} = R : S$.

Theorem 2.1 (Main theorem)

(1)
$$\Omega CM(A) \subseteq \Omega CM(R, I) \subseteq CM(A)$$
.

(2)
$$\Omega CM(A) = \Omega CM(R, I) \iff I$$
 is stable.

(3) $\Omega CM(R, I) = CM(A) \iff IK = I \iff I \subseteq \mathfrak{c}.$

Corollary 2.2

 $\Omega CM(A) = CM(A) \iff I$ is stable and $I \subseteq \mathfrak{c} \iff A$ is a Gorenstein ring.

In particular, since $\Omega CM(R, \mathfrak{c}) = CM(S)$, we have

 $\Omega CM(S) = \Omega CM(R, c) \iff S$ is a Gorenstein ring.

Recall $A = \operatorname{End}_R(I) \cong I : I = R : I \in \operatorname{mod} R$.

Note that

 $I \in \Omega CM(R, I), R \subseteq A \subseteq \overline{R}, R : A = I, \text{ and } R : (R : A) = A.$

For $X, Y \in Mod A$, we have

- X is A-torsionfree \iff X is R-torsionfree
- $\operatorname{Hom}_R(X, Y) = \operatorname{Hom}_A(X, Y)$, provided Y is R-torsionfree

• $\operatorname{tr}_R(X)A = \operatorname{tr}_R(X)$ and $\operatorname{tr}_R(X) \subseteq R : A$.

Let $M \in \Omega CM(R)$ and $M \neq (0)$. Then $M \in Mod A$ by extending the *R*-action $\iff \operatorname{tr}_R(M)A = \operatorname{tr}_R(M)$ $\iff \operatorname{tr}_R(M) \subseteq R : A.$

Fact 2.3 (Kobayashi)

Let $0 \to L \to M \to N \to 0$ be an exact sequence in Mod R. If $M \in \Omega CM_{\mathcal{P}}(R)$ and $N \in CM(R)$, then $L \in \Omega CM_{\mathcal{P}}(R)$.

(1) $\Omega CM(A) \subseteq \Omega CM(R, I) = \{M \in \Omega CM(R) \mid tr_R(M) \subseteq I\} \subseteq CM(A).$

(Proof) Let $M \in \Omega CM(A)$. May assume $M \neq (0)$ and choose

$$0 \to M \to A^{\oplus n} \to A^{\oplus \ell}$$
 with $n, \ell > 0$.

• Suppose $R \ll A^{\oplus n}$, so $A \cong R \oplus Y$ for $\exists Y \in \operatorname{Mod} R$.

Since A/R is torsion, so is Y. This shows Y = (0), because $Y \subseteq R \oplus Y \cong A$. Thus $A \cong R$. In particular, $\mu_R(A) = 1$. As $1 \notin \mathfrak{m}A$, we obtain R = A and I = R. Therefore $M \in \Omega CM(R)$ and $tr_R(M) \subseteq R = I$.

• Suppose $R \not \oplus A^{\oplus n}$.

As $A^{\oplus n}$ is *R*-reflexive, we get $A^{\oplus n} \in \Omega CM_{\mathcal{P}}(R)$. Consider

$$0 \to M \to A^{\oplus n} \to X \to 0$$
 and $0 \to X \to A^{\oplus \ell}$.

Then $X \in CM(R)$, so $M \in \Omega CM_{\mathcal{P}}(R) \subseteq \Omega CM(R)$. Thus $tr_R(M) \subseteq R : A = I$. In each case, we have $\Omega CM(A) \subseteq \Omega CM(R, I)$.

Let $M \in \Omega CM(R, I)$. May assume $M \neq (0)$. Since $tr_R(M) \subseteq I = R : A$, we have $M \in ModA$. As M is R-torsionfree, $M \in CM(A)$. Hence $\Omega CM(R, I) \subseteq CM(A)$.

11 / 22

(3) $\Omega CM(R, I) = CM(A) \implies I \subseteq \mathfrak{c} = R : S.$

Note that A = R : I = (K : K) : I = K : IK. By setting $K_A = K : A$, we have

$$\mathsf{K}_{\mathsf{A}} = \mathsf{K} : (\mathsf{K} : \mathsf{I}\mathsf{K}) = \mathsf{I}\mathsf{K}.$$

Suppose $\Omega CM(R, I) = CM(A)$. Since $IK = K_A \in \Omega CM(R)$, we can choose

$$0 \to IK \xrightarrow{\varphi} R^{\oplus n} \to R^{\oplus \ell}$$
 where $n > 0, \ \ell \ge 0.$

Because $\operatorname{tr}_R(IK) \subseteq I$, we have $\operatorname{Im} \varphi \subseteq I^{\oplus n}$. This induces

$$\varphi': IK \to I^{\oplus n}, x \mapsto \varphi(x) (x \in IK).$$

Since $I^{\oplus n}$ is A-torsionfree, $\varphi' \in \operatorname{Hom}_R(IK, I^{\oplus n}) = \operatorname{Hom}_A(IK, I^{\oplus n})$. Look at

Then depth_R X' > 0, so we have

 $0 \to \operatorname{Hom}_{A}(X', IK) \to \operatorname{Hom}_{A}(I^{\oplus n}, IK) \to \operatorname{Hom}_{A}(IK, IK) \to 0 = \operatorname{Ext}_{A}^{1}(X', IK).$

This shows $\varphi' : IK \to I^{\oplus n}$ is split. By choosing $X \in Mod A$ s.t. $I^{\oplus n} \cong IK \oplus X$,

$$\begin{split} \mathrm{M}_n(A) &= \mathrm{M}_n(I:I) \cong \mathrm{M}_n(\mathrm{End}_A(I,I)) \cong \mathrm{End}_A(I^{\oplus n}) \cong \mathrm{End}_A(IK \oplus X) \\ &\cong \begin{bmatrix} \mathrm{Hom}_A(IK,IK) & \mathrm{Hom}_A(X,IK) \\ \mathrm{Hom}_A(IK,X) & \mathrm{Hom}_A(X,X) \end{bmatrix}. \end{aligned}$$

Then $Y = \text{Hom}_A(X, IK)$ is A-projective. For each $\mathfrak{p} \in \text{Ass } A$, we have

$$A_{\mathfrak{p}} \oplus X_{\mathfrak{p}} \cong (K_{\mathcal{A}})_{\mathfrak{p}} \oplus X_{\mathfrak{p}} \cong (IK \oplus X)_{\mathfrak{p}} \cong (I^{\oplus n})_{\mathfrak{p}} \cong (IA_{\mathfrak{p}})^{\oplus n} = A_{\mathfrak{p}}^{\oplus n}.$$

Hence $X_{\mathfrak{p}} \in \operatorname{mod} A$ is a free $A_{\mathfrak{p}}$ -module of rank n-1. This induces

$$Y_{\mathfrak{p}} \cong \operatorname{Hom}_{A_{\mathfrak{p}}}(X_{\mathfrak{p}}, (IK)_{\mathfrak{p}}) \cong \operatorname{Hom}_{A_{\mathfrak{p}}}(X_{\mathfrak{p}}, A_{\mathfrak{p}}) \cong A_{\mathfrak{p}}^{\oplus (n-1)}$$

so that $Y \cong A^{\oplus (n-1)}$ in Mod A.

13/22

Therefore

$$X \cong \operatorname{Hom}_{A}(\operatorname{Hom}_{A}(X, \mathsf{K}_{A}), \mathsf{K}_{A}) \cong \operatorname{Hom}_{A}(A^{\oplus (n-1)}, \mathsf{K}_{A}) \cong \mathsf{K}_{A}^{\oplus (n-1)}$$

whence $I^{\oplus n} \cong K_A \oplus X \cong K_A^{\oplus n}$. Since IA_P is a faithful ideal with $id_{A_P} IA_P = 1$, we see that $IA_P \cong (K_A)_P$ for $\forall P \in Max A$. Hence

$$\widehat{A} \otimes_A I \cong \widehat{A} \otimes_A \mathsf{K}_A \quad \text{in } \operatorname{Mod} \widehat{A}.$$

Therefore $I \cong K_A = IK$ in Mod A, so that

$$IK = \alpha I$$
 for $\exists \alpha \in Q(R)^{\times}$.

Thus, for all $\ell > 0$, the equality $IK^{\ell} = \alpha^{\ell}I$ holds. Recall S = R[K]. By choosing $\ell \gg 0$ with $S = K^{\ell}$, we have $IS = \alpha^{\ell}I$, so that

$$\alpha^{\ell} I = IS = IS \cdot S = \alpha^{\ell} IS.$$

This implies I = IS, whence $I \subseteq I : S \subseteq R : S = c$.

For a subcategory \mathcal{X} of $\operatorname{mod} R$, we denote by

• $\operatorname{ind} \mathcal{X}$ the set of isomorphism classes of indecomposable *R*-modules in \mathcal{X} .

Corollary 2.4

Let R be a Gorenstein local domain with dim R = 1. Then

$$\operatorname{ind}\Omega \operatorname{CM}(R) = \bigcup_{\substack{R \neq A \in \mathcal{Y} \\ I \in \mathcal{T}, \ I \neq R}} \operatorname{ind}\operatorname{CM}(A) \cup \{[R]\}$$
$$= \bigcup_{\substack{I \in \mathcal{T}, \ I \neq R}} \operatorname{ind}\operatorname{CM}(\operatorname{End}_{R}(I)) \cup \{[R]\}$$

where

- \mathcal{Y} is the set of birational module-finite extensions A s.t. $A \in \operatorname{Ref}(R)$
- T is the set of regular reflexive trace ideals of R.

Question 2.5 $\Omega CM(R)$ is of finite type $\iff CM(A)$ is of finite type for some $A \in \mathcal{Y}$?

3. When is $\Omega CM(R)$ of finite type?

Recall $R \subseteq K \subseteq \overline{R}$ s.t. $K \cong K_R$, S = R[K] and $\mathfrak{c} = R : S$. Then $S \in \mathcal{Y}$ and

- R is a Gorenstein ring $\iff R = K \iff R = S \iff R = \mathfrak{c}$
- *R* is an almost Gorenstein ring $\iff K/R \cong (R/\mathfrak{m})^{\oplus} \iff S/R \cong (R/\mathfrak{m})^{\oplus}$ $\iff \mathfrak{m} \subseteq \mathfrak{c}$
- *R* is an generalized Gorenstein ring if $R = \mathfrak{c}$, or $R \neq \mathfrak{c}$ and K/R is R/\mathfrak{c} -free.

Theorem 3.1

Suppose R is a generalized Gorenstein ring with minimal multiplicity. Then

$$|\operatorname{ind}\Omega \operatorname{CM}(R)| = \ell_R(R/\mathfrak{c}) + |\operatorname{ind}\operatorname{CM}(S)|.$$

Hence, $\Omega CM(R)$ is of finite type $\iff CM(S)$ is of finite type.

Corollary 3.2

Suppose e(R) = v(R) = 3. Then $|ind\Omega CM(R)| = \ell_R(R/\mathfrak{c}) + |indCM(S)|$.

Corollary 3.3 (cf. Kobayashi)

Suppose *R* is a non-Gorenstein almost Gorenstein ring with minimal multiplicity. Then $|\operatorname{ind}\Omega CM(R)| = 1 + |\operatorname{ind}CM(E)|$, where $E = \mathfrak{m} : \mathfrak{m}$.

Proposition 3.4

Suppose \overline{R} is a DVR, $\overline{R} \in \text{mod } R$, and $\mathfrak{m}\overline{R} \subseteq R$. Then $\text{ind} \Omega \text{CM}(R) = \{[R], [\overline{R}]\}$.

Example 3.5

Let A be a RLR with $n = \dim A \ge 2$. Let X_1, X_2, \dots, X_n be a regular sop of A. We set $R = A / \bigcap_n (X_j \mid 1 \le j \le n, \ j \ne i).$

Then $\operatorname{ind}\Omega \operatorname{CM}(R) = \{[R], [\overline{R}]\}.$

Example 3.6

Suppose ch R > 0 and \overline{R} is a DVR. If R is *F*-pure, then $\operatorname{ind}\Omega CM(R) = \{[R], [\overline{R}]\}$.

Naoki Endo (Meiji University)

Note that

• if R is a generalized Gorenstein ring with minimal multiplicity, then S = R[K] is a Gorenstein ring.

Corollary 3.7

Let R be the numerical semigroup ring over a field k. Suppose that R is a generalized Gorenstein ring with minimal multiplicity. Then TFAE.

(1) $\Omega CM(R)$ is of finite type.

(2) S = k[[H]] is a semigroup ring of H, where H is one of the following forms:

(a)
$$H = \mathbb{N}$$
,
(b) $H = \langle 2, 2q + 1 \rangle$ $(q \ge 1)$,
(c) $H = \langle 3, 4 \rangle$, or
(d) $H = \langle 3, 5 \rangle$.

Example 3.8 (Kobayashi)

Let $R = k[[t^3, t^7, t^8]]$. Then $E = \mathfrak{m} : \mathfrak{m} = k[[t^3, t^4, t^5]]$, so CM(E) is of finite type. Thus $\Omega CM(R)$ is of finite type, but R is not an almost Gorenstein ring.

Since e(R) = 3, R is a generalized Gorenstein ring. Note that $K = R + Rt \cong K_R$ and $R \subseteq K \subseteq \overline{R}$. Hence

$$S = R[K] = R[t] = k[[t]] = k[[\mathbb{N}]] = \overline{R} =: V$$

which yields $\Omega CM(R)$ is of finite type. Moreover

•
$$c = R : S = R : V = t^6 V$$

•
$$\ell_R(R/\mathfrak{c}) = \ell_R(V/\mathfrak{c}) - \ell_R(V/R) = 6 - 4 = 2.$$

Therefore

 $|\operatorname{ind} \Omega \operatorname{CM}(R)| = 2 + |\operatorname{ind} \operatorname{CM}(S)| = 3.$

0	1	2
3	4	5
6	7	8
9	10	11
12	13	14

19/22

Note that if CM(R) is of finite type, then

- \mathcal{X}_R is a finite set (Goto-Ozeki-Takahashi-Watanabe-Yoshida)
- R is analytically unramified (Krull, Leuschke-Wiegand)

where \mathcal{X}_R denotes the set of Ulrich ideals of R.

Theorem 3.9

If $\Omega CM(R)$ is of finite type, then \mathcal{X}_R is finite and R is analytically unramified.

Example 3.10

Let (A, \mathfrak{m}) be a CM local ring with dim A = 1, $\exists K_A$, $|A/\mathfrak{m}| = \infty$. Assume Q(A) is a Gorenstein ring. We set

$$\mathsf{R} = \mathsf{A} \ltimes \mathsf{A}.$$

Then, because $|\mathcal{X}_R| = \infty$, we have $|\operatorname{ind} \Omega CM(R)| = \infty$.

э

We say that R is an Arf ring, if every integrally closed regular ideal is stable.

Theorem 3.11 (cf. Dao, Dao-Lindo, Isobe-Kumashiro)

Suppose \overline{R} is a local ring. If R is an analytically unramified Arf ring, then $\Omega CM(R)$ is of finite type. In particular, \mathcal{X}_R is finite.

Example 3.12 Let $R = k[[t^3, t^4]]$. Then $|\operatorname{ind}\Omega CM(R)| = |\operatorname{ind}CM(R)| < \infty$, but R is not an Arf ring.

Example 3.13

Let $R = k[[t^3, t^7]]$. Then

$$|\mathcal{X}_{R}| = |\{(t^{6} - ct^{7}, t^{10}) \mid 0 \neq c \in k\}| < \infty$$

provided k is finite. However $|\operatorname{ind}\Omega CM(R)| = \infty$ and R is not an Arf ring.

イロト イヨト イヨト イ

Thank you for your attention.

• • • • • • • •

æ